Monte Carlo Methods
Monte Carlo Methods 8KUAAN11 | ECTS | 2 | SEMESTER | S8 | |||||||||||||||||||||||||||||||||||||||||||||||||
lectures | classes / seminars | practical work | integrative teaching | independent work | |||||||||||||||||||||||||||||||||||||||||||||||||
7 h | 14 h | 0 h | 0 h | 36 h | |||||||||||||||||||||||||||||||||||||||||||||||||
Language used | French |
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Course supervisor(s) | Rémi PEYRE, associate professor![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Key words | Random simulation; Monte Carlo method; Variance reduction; MCMC methods; Simulated annealing; Stochastic gradien descent | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites | Probability theory (level: 1st year of master's degree); basics in Python programming language | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Overall objective | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Learn how to use random simulation to solve complicated deterministic problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Course content and organisation | |||||||||||||||||||||||||||||||||||||||||||||||||||||
This course is made of two distinct (though closely related) parts, the core aspect shared by both parts being the use of random simulation procedures in order to solve problems whose statement was initially purely deterministic! The first part deals with the “Monte Carlo method” to compute an integral-like quantity (so, something deterministic): the method consists in, first, writing that quantity as a probabilistic expectation; and then, estimating that expectation through the use of random simulations. In many practical situations, the approximated result given by that method will turn out to be more precise than the computation of the quantity that one would have obtained by “classical” numerical analysis techniques! Besides the basic question of estimating the quantity of interest, the cours will also show how to provide with a confidence interval for the estimator. Sometimes it is important to have means to shorten the length of the interval that one will obtain for a given computational cost: such a goal may be achieved by the so-called variance reduction techniques. Four such techniques are explained by the course, viz.: importance sampling; conditioning; common random numbers; and control variate. In some situations, simulating the needed wanted variables turns out to be a more difficult challenge than applying the Monte Carlo method as such. To tackle that issue, we will introduce the so-called Monte Carlo Markov Chain (or commonly “MCMC”) methods, which enable to circumvent that difficulty in many practical cases. That Monte Carlo Markov Chains chapter will naturally lead us to the second part of the course, devoted to stochastic methods for mathematical optimization. The most famous such method is simulated annealing, which is closely related to the Metropolis-Hastings MCMC algorithm, introduced in the previous chapter. Also, the course will explain how simulated annealing can be improved into parallel tempering. To finish, the last chapter shall be devoted to the stochastic gradient descent method: this is an optimization procedure which lays at the core of the training protocols for artificial neuron networks!
A large part of the teaching will be devoted to implementing the studied concepts into computer programs. For the computer exercise sessions, Python has been chosen for language. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Skills | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Levels | Description and operational verbs | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Know | How to compute the confidence interval for a Monte Carlo estimation method What the main variance reduction techniques are What are the formulas that characterize the Markov chains used in MCMC methods | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Understand | What is the principle of the Monte Carlo method to estimate and expectation; What are its strengths and weaknesses What is the use of the MCMC methods; How do the Markov chains involved in these methods behave | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Apply | Implement a Monte Carlo estimation method, resp. a variance reduction technique, into a computer program Implement a Metropolis‒Hastings algorithm, resp. a Gibbs algorithm | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Analyze | Choose a reduction variance technique that will be appropriate for the problem considered Look critically at the convergence behaviour of a Monte Carlo estimator Choose an MCMC method that will be appropriate for the problem considered Look critically at the convergence behaviour of a MCMC method | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Summarize | In a statistical context, use an MCMC algorithm to compute relevant Bayesian estimators | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Assess |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||
Compliance with the United Nations Sustainable Development Goals | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation methods | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Continuous assessment | Written test | Oral presentation / viva | Written report / project |